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Abstract
We investigate the fundamental cycle of a periodic box–ball system (PBBS)
from a relation between the PBBS and a solvable lattice model. We show that
the fundamental cycle of the PBBS is obtained from eigenvalues of the transfer
matrix of the solvable lattice model.

PACS numbers: 05.45.−a, 02.30.Ik, 05.50.−q

1. Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of a regular array of
cells [1]. Each cell can only have a finite number of states and is updated in discrete time
steps. Although the updating rule is simple, CAs often exhibit very complicated time evolution
patterns and they have been investigated as good models for natural and/or social phenomena.
The box–ball systems (BBSs) are a well-studied class of filter-type CA which are expressed as
discrete dynamical systems of balls in an infinite array of boxes [2, 3]. One reason for interest
in them is the soliton-like solutions which they support. In fact, the BBSs can be obtained
from integrable nonlinear equations through ultradiscretization [4, 5]. It can also be obtained
from a solvable lattice model at zero temperature [6–8].

A periodic box–ball system (PBBS) is a BBS subject to a periodic boundary condition
[9]. Being composed of a finite number of boxes and balls, it takes on a finite number of
patterns. Therefore, the time evolution is necessarily periodic and the fundamental cycle,
i.e. the shortest period of the periodic motion, exists for any given state. We can obtain an
explicit formula expressing the fundamental cycle of a given state [10]. Using the formula, we
can estimate the asymptotic behaviour of the fundamental cycles which shows an interesting
number theoretical aspect of the PBBS [11, 12].

The PBBS is obtained through ultradiscretization of the nonautonomous discrete KP
equation imposing the periodic boundary condition [13]. On the other hand, it can be obtained
from the zero temperature limit of solvable lattice models which are generalizations of the
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six-vertex model; we noticed that the transfer matrix in this limit describes the time evolution
of the PBBS and the fundamental cycle could be read off from the spectrum of the transfer
matrix (announced in [12]). In this paper, we report results obtained from the investigations
along this line.

The paper is organized as follows. In section 2, we give the definition of the PBBS. We
describe conserved quantities which are expressed by a Young diagram, and give an explicit
formula for the fundamental cycle which was obtained in [10]. In section 3, we explain why we
can obtain the information on the fundamental cycle from the spectrum of the transfer matrix
of the vertex models at zero temperature. In section 4, we give an explicit formula for the
eigenvalue of the transfer matrix. To diagonalize the transfer matrix, we follow the standard
framework of the Bethe ansatz method. The section ends with a conjecture concerning an
essential relation between the conserved quantities of the PBBS and the solutions to the Bethe
ansatz equation. Section 5 is devoted to conclusions and remarks.

This work is a continuation of our previous works on PBBSs [13, 14] and the main
results were announced at the annual meeting of the Mathematical Society of Japan [21]
and published in its collection of abstracts. After completing this work, one of the authors
(TT) received a preprint treating the same system from a similar point of view [20], in which
our theorem 3.1 together with corollary 4.1 were conjectured, and theorem 4.1 for general
A

(1)
M cases was stated. (See also remark 3.1 in ours.) In this paper we gave derivations of

theorem 4.1 in more detail, which may help interested readers to understand the technical
details.

2. Periodic box–ball system and the fundamental cycle

Consider a one-dimensional array of boxes each with a capacity of one ball. A periodic
boundary condition is imposed by assuming that the last box is adjacent to the first one (e.g.,
the boxes are arranged in a circle). We denote the number of boxes by N and the number of
balls by M . We assume M � N/2. An arrangement of M balls in N boxes is called a pattern
or a state of the PBBS. The rule for the time evolution from time step t to t + 1 is given as
follows (see figure 1):

1. In each filled box, create a copy of the ball.
2. Move all the copies once according to the following rules.
3. Choose one of the copies and move it to the nearest empty box on the right of it.
4. Choose one of the remaining copies and move it to the nearest empty box on the right of

it.
5. Repeat step 4 until all of the copies have moved.
6. Delete all the original balls.

An example of the time evolution of the PBBS according to this rule is shown in figure 2. Since
there are a finite number of states and the time evolution rule is invertible, every trajectory is
cyclic. The fundamental cycle of a given state is defined to be the length of the trajectory to
which the state belongs.

An explicit formula is known for the fundamental cycle of a given state of the PBBS [10].
It is described in terms of conserved quantities. The algorithm to construct the conserved
quantities is as follows [9, 15]. Denoting a vacant box by 0 and a filled box by 1, a state of the
PBBS is represented as a 0,1 sequence of length N (see figure 3).

1. Let p1 be the number of 10s in the sequence.
2. Eliminate all the 10s in the original sequence and let p2 be the number of 10s in the new

sequence.
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Figure 1. Time evolution rule for the PBBS.

Figure 2. An example of the time evolution of the PBBS.

3. Similarly, let pi denote the number of times the string 10 appears in the sequence at step
i, where each step is followed by the deletion of all of the 10s which appear.

4. Let {p1, p2, . . . , pm} be the weakly decreasing finite sequence of positive integers
constructed in this way with pm+1 = 0 being the first occurrence of zero.

For example, for the state

(�) 011111000111000110000100001000110000,

we have p1 = 6, and eliminating 10s, we obtain a new sequence

011110011001000000001000
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 1 1 0 0 1 1 0 0 0 0≡

Figure 3. A correspondence between a state of the PBBS and a 0, 1 sequence.

Figure 4. Young diagram corresponding to the conserved quantities of (�).

and p2 = 4. In a similar manner, we have p3 = 2, p4 = 1, p5 = 1. To see that these {pj } are
conserved, we evolve (�) by one time step

(�′) 000000111000111001111010000100001100.

By applying the above algorithm again, we find the same integer sequence {pj }5
j=1.

As the sequence {p1, p2, . . . , pm} is weakly decreasing, we can associate a Young diagram
with it by regarding pj as the number of squares in the j th column of the diagram, see figure 4.
The lengths of the rows are also weakly decreasing positive integers. Let the distinct row
lengths be L1 > L2 > · · · > Ls and let nj be the number of times that length Lj appears (see
figure 4). The set {Lj , nj }sj=1 is another expression for the conserved quantities of the PBBS.

Let �0 := N − 2M,N0 := �0, Ls+1 := 0 and

�j := Lj − Lj+1 (j = 1, 2, . . . , s),

Nj := �0 +
j∑

k=1

2nk(Lk − Lj+1) (j = 1, 2, . . . , s).

Then, for the fundamental cycle, the following proposition holds:

Proposition 2.1 ([10]). The fundamental cycle is a divisor of

LCM

(
NsNs−1

�s�0
,
Ns−1Ns−2

�s−1�0
, . . . ,

N1N0

�1�0
, 1

)
, (2.1)

where LCM(x, y) := 2max[x2,y2]3max[x3,y3]5max[x5,y5] · · · for x = 2x2 3x3 5x5 · · · and y =
2y2 3y3 5y5 · · · with xi, yi ∈ Z, and LCM(x, y, z, . . .) := x, LCM(LCM(y, z, . . .)).

Since (2.1) depends on the Young diagram Y expressing the conserved quantities of the
PBBS, we denote the LCM by T (Y ).
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Figure 5. 〈i, j |R(�,1)(u; λ)|i′, j ′〉.

3. Relation between the PBBS and solvable lattice models

In this section we explain that the time evolution of the PBBS is given by the transfer matrix
of a vertex model.

Consider the six-vertex model and its higher-spin generalizations. A method of
constructing the R-matrices R(�,�′) is described in [16]; R(�,�′) : C

�+1 ⊗ C
�′+1 → C

�+1 ⊗ C
�′+1

R(�,�′)(|i ′〉 ⊗ |j ′〉) =
�∑

i=0

�′∑
j=0

〈i, j |R(�,�′)|i ′, j ′〉(|i〉 ⊗ |j 〉)

where {|i〉|i = 0, 1, . . . , �} is a basis of C
�+1 and {|j 〉|j = 0, 1, . . . , �′} that of C

�′+1. The
R-matrices are parametrized by two parameters, u and λ. For �′ = 1, the parametrization of
R(�,1) = R(�,1)(u; λ) which we need is given by

(i) for k = 0, 1, . . . , �,

〈k, 1|R(�,1)(u; λ)|k, 1〉 = ρ sinh

(
λ

(
k − � − 1

2

)
+ u

)
,

〈k, 0|R(�,1)(u; λ)|k, 0〉 = ρ sinh

(
λ

(
� + 1

2
− k

)
+ u

)
,

(ii) for k = 1, 2, . . . , �,

〈k − 1, 1|R(�,1)(u; λ)|k, 0〉 = 〈k, 0|R(�,1)(u; λ)|k − 1, 1〉 = ρ
√

sinh λk sinh λ(� − k + 1),

(iii) otherwise, 〈i, j |R(�,1)(u; λ)|i ′, j ′〉 = 0

where u and λ are called the spectral parameter and the deformation parameter, respectively.
The normalization constant ρ = ρ(u; λ) is chosen such that 〈�, 1|R(�,1)(u; λ)|�, 1〉 = 1. The
matrix R(1,�)(u; λ) is related to R(�,1)(u; λ) by

R(1,�)(u; λ) = P (�,1)R(�,1)(u; λ)P (1,�),

where P (m,n) : C
m+1 ⊗ C

n+1 → C
n+1 ⊗ C

m+1 is the permutation

P (m,n)(|i〉 ⊗ |j 〉) = |j 〉 ⊗ |i〉.
These R-matrices satisfy the Yang–Baxter equation (YBE)

R
(1,�)
12 (u; λ)R

(1,1)
13 (u + v; λ)R

(�,1)
23 (v; λ) = R

(�,1)
23 (v; λ)R

(1,1)
13 (u + v; λ)R

(1,�)
12 (u; λ) (3.1)

where R12 = R ⊗ I, R23 = I ⊗ R and R13 = ∑
a ⊗ 1 ⊗ b

(
R = ∑

a ⊗ b
)

(see figures 5
and 6).
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Figure 6. A graphical representation of the YBE (3.1). (V1 = C
2, V2 = C

�+1 and V3 = C
2.)

In the limit λ → +∞, the R-matrix given in [16] tends to a matrix which describes the
local time evolution of a BBS. Let R := limu→0 limλ→+∞ R(1,�)(u; λ). Then its action is given
by

R :


|1〉 ⊗ |�〉 �→ |1〉 ⊗ |�〉,
|1〉 ⊗ |k〉 (0 � k < �) �→ |0〉 ⊗ |k + 1〉,
|0〉 ⊗ |k〉 (0 < k � �) �→ |1〉 ⊗ |k − 1〉,
|0〉 ⊗ |0〉 �→ |0〉 ⊗ |0〉.

Hence, if we regard

• |1〉, |0〉 ∈ C
2 as the filled box and the vacant box, respectively, and

• |k〉 ∈ C
�+1(k = 0, 1, . . . , �) as the carrier with capacity � carrying k balls,

the action of R coincides with the local time evolution rule of the BBS with a carrier of
capacity �, introduced in [17]. Hereafter, we assume that � is larger than the number of balls.
In this case the BBS with the carrier coincides with the original BBS.

Define the transfer matrix t̂ (u; λ) : V → V (V := C
2 ⊗ C

2 ⊗ · · · ⊗ C
2︸ ︷︷ ︸

N

) by

t̂ (u; λ)(|i ′1〉 ⊗ |i ′2〉 ⊗ · · · ⊗ |i ′N 〉)
=

∑
i1,i2,...,iN ∈{0,1}

〈i1, i2, . . . , iN |t̂ (u; λ)|i ′1, i ′2, . . . , i ′N 〉(|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉),

〈i1, i2, . . . , iN |t̂ (u; λ)|i ′1, i ′2, . . . , i ′N 〉

:=
�∑

j1,j2,...,jN =0

〈iN , j1|R(1,�)(u; λ)|i ′N, jN 〉〈iN−1, jN |R(1,�)(u; λ)|i ′N−1, jN−1〉 · · ·

· · · 〈i2, j3|R(1,�)(u; λ)|i ′2, j2〉〈i1, j2|R(1,�)(u; λ)|i ′1, j1〉. (3.2)

We also define V[M] := span{|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 ∈ V |i1 + i2 + · · · + iN = M}. Since the
R-matrix obeys the so-called ice condition

〈i, j |R(1,�)|i ′, j ′〉 = 0 unless i + j = i ′ + j ′,

t̂(u; λ) maps V[M] into itself. Let t̂ := limu→0 limλ→+∞ t̂ (u; λ), and let �[M] be the set
consisting of all 0, 1 sequences of length N such that the number of 1s is M. Note that �[M]

is identified with the set of states of the PBBS with M balls. We regard �[M] ⊂ V[M] by
identifying a monomial |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 ∈ V[M] with a state i1i2 · · · iN ∈ �[M]. Then,
t̂ |�[M] maps �[M] onto itself, and it gives the time evolution of the PBBS [9]. For example

00110010
t̂�−→ 00001101.
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Figure 7. Decomposition of �[M] into trajectories. (‘•’ and ‘→’ represent the element of �[M]
and the action of t̂ , respectively.)

(v)| 〉1 | 〉 〉· · · · ·2 |T

Figure 8. t̂ is diagonalized on each trajectory as t̂ |k̃〉 = e2π
√−1k/T (ν) |k̃〉 where |k̃〉 =∑T (ν)

n=1 e−2π
√−1kn/T (ν) |n〉(k = 1, 2, . . . , T (ν)).

Next we will explain how knowledge of the spectrum of the transfer matrix allows one
to determine the fundamental cycles. As was mentioned in the previous section, �[M] is
decomposed into the cyclic trajectories of t̂

�[M] =
⊔
ν

�(ν),

where �(ν) denotes a set of states in a trajectory ν, and T (ν) = |�(ν)| is by definition the
fundamental cycle of a state in �(ν) (figure 7). As is easily seen, the spectrum of t̂ |�(ν) is
{exp(2π

√−1k/T (ν))|k = 1, 2, . . . , T (ν)} (see figure 8). The connection between the spectrum
of t̂
∣∣
�[M]

and the fundamental cycles is given in the following theorem.

Theorem 3.1. Let the eigenvalues of the restriction of t̂ to the subspace spanned by the
members in �(ν) be written as

exp

(
2π

√−1
Qk

Pk

)
(k = 1, 2, . . . , T (ν))

where Qk and Pk are coprime for each k. Then each Pk is a divisor of the fundamental cycle
T (ν), and

max{Pk|k = 1, 2, . . . , T (ν)} = T (ν).

Remark 3.1. Theorem 3.1 is a consequence of the following general fact; when a transfer
matrix gives an updating rule of an invertible discrete dynamical system, its eigenvalues are
given as

exp

[
2
√−1π

k

Tν

]
(k = 0, 1, 2, . . . , Tν − 1),

where Tν is a fundamental cycle for an orbit indexed by a parameter ν. Although this fact is
simple and easily understood, it gives a universal relationship between fundamental cycles of
a cellular automaton and the lattice model associated with it.
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4. Diagonalization of the transfer matrix

In the following, we use

x = eu, q = e−λ

instead of u and λ. Accordingly, we write R[x; q] = R(u; λ) and so on.
The transfer matrix (3.2) commutes with the transfer matrix of the six-vertex model by

virtue of the YBE (3.1). It follows that they have a common set of eigenvectors. Let |ϕ〉 be a
vector in V (= C

2 ⊗ C
2 ⊗ · · · ⊗ C

2︸ ︷︷ ︸
N

) of the form

|ϕ〉 = ∣∣ϕ; {xj }Mj=1

〉 = C[x1; q]C[x2; q] · · · C[xM; q](|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉),
where C[x; q] : V → V is a creation operator in the algebraic Bethe ansatz method [18],
which is defined by

C[x; q](|i ′1〉 ⊗ |i ′2〉 ⊗ · · · ⊗ |i ′N 〉)
=

∑
i1,i2,...,iN ∈{0,1}

〈i1, i2, . . . , iN |C[x; q]|i ′1, i ′2, . . . , i ′N 〉(|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉),

〈i1, i2, . . . , iN |C[x; q]|i ′1, i ′2, . . . , i ′N 〉

:=
1∑

j2,j3,...,jN =0

〈iN , 1|R(1,1)[x; q]|i ′N, jN 〉〈iN−1, jN |R(1,1)[x; q]|i ′N−1, jN−1〉 · · ·

· · · 〈i2, j3|R(1,1)[x; q]|i ′2, j2〉〈i1, j2|R(1,1)[x; q]|i ′1, 0〉.
Assume that the additional parameters x1, x2, . . . , xM are mutually distinct and satisfy the
Bethe ansatz equation (BAE)(

q−1xk − qx−1
k

xk − x−1
k

)N

=
M∏

j=1
j �=k

q−1xkx
−1
j − qx−1

k xj

qxkx
−1
j − q−1x−1

k xj

. (4.1)

Then t̂[x; q]|ϕ〉 = 	[x; {xj }; q]|ϕ〉, where

	[x; {xj }; q] =
�∑

k=0

(
qkx − q�−k+1x−1

x − q�+1x−1

)N

×
M∏

j=1

(
q−1x2

j

)
x−2 − q−�−2 − q� + q−2

(
q−1x2

j

)−1
x2

q�−2k
(
q−1x2

j

)
x−2 − 1 − q−2 + q2k−�−2

(
q−1x2

j

)−1
x2

.

For any solution {xk}Mk=1 of (4.1), each xk is a function of q. In relation to the PBBS, we are
interested in these solutions at q = 0. To do this, we will make use of the string hypothesis.
First, let Y be the Young diagram, which represents the partition of M

m1 + m1 + · · · + m1︸ ︷︷ ︸
K1

+ m2 + m2 + · · · + m2︸ ︷︷ ︸
K2

+ · · · + ms + ms + · · · + ms︸ ︷︷ ︸
Ks

(4.2)

where m1 < m2 < · · · < ms and Ki > 0 (i = 1, 2, . . . , s) (figure 9). Then, the string
hypothesis is the assumption that any solution {xj }Mj=1 to the BAE (4.1) is expressed as {xiαk}
of the form

(xiαk(q))2 = qmi−2k+2{z0
iα + O(q)} (i = 1, 2, . . . , s;α = 1, 2, . . . , Ki; k = 1, 2, . . . , mi).
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ms

m1

k mi

α Ki

K1

Ks

Figure 9. The Young diagram corresponding to (4.2).

Accordingly, the space V[M] decomposes into subspaces V Y
[M](q) spanned by the

eigenvectors determined by the string hypothesis:

V[M] =
⊕

Y

V Y
[M](q),

V Y
[M](q) = span{|ϕ; {xiαk}〉 | {xiαk} ∈ SY }

where SY is the set of all solutions to the BAE for a given Young diagram Y. By direct
calculation we obtain the following expression.

Proposition 4.1. Eigenvalues of the transfer matrix t̂ = limx→1 limq→0 t̂[x; q] corresponding
to the eigenvectors in V Y

[M] := limq→0 V Y
[M](q) are given by

s∏
i=1

Ki∏
α=1

(−z0
iα

)mi
. (4.3)

Hence, we need only the leading coefficients
{
z0
iα

}
of the solution to the BAE. A system

of equations which determines
{
z0
iα

}
may be derived [19] from the BAE (4.1). This is called

the string centre equation (SCE):
s∏

j=1

Kj∏
β=1

(
z0
jβ

)Aiα,jβ = (−1)N+Ki+1 (i = 1, 2, . . . , s;α = 1, 2, . . . , Ki) (4.4)

where

Aiα,jβ := δij δαβ(Pi + Ki) + 2 min(mi,mj ) − δij , Pi := N − 2
s∑

j=1

Kj min(mi,mj ).

In terms of the real variables ui,α defined by z0
i,α = exp(2π

√−1ui,α), the SCE (4.4) becomes
a system of linear congruence equations. It is solved explicitly using Cramer’s rule by
introducing a set of integers h = {hiα | i = 1, 2, . . . , s;α = 1, 2, . . . , Ki}.
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Theorem 4.1. The eigenvalue (4.3) is

	(Y ;h) = exp

[
π

√−1

(∑s
i=1

∑Ki

α=1 mi det(Biα)

det(A)
+ M

)]
where

A =


A11,11 · · · A11,iα · · · A11,sKs

A12,11 · · · A12,iα · · · A12,sKs

...
. . .

...
. . .

...

AsKs,11 · · · AsKs,iα · · · AsKs,sKs

 ,

Biα = Biα(h) =



(i,α)

∨
A11,11 · · · N + K1 + 2h11 + 1 · · · A11,sKs

A12,11 · · · N + K1 + 2h12 + 1 · · · A12,sKs

...
. . .

...
. . .

...

AsKs,11 · · · N + Ks + 2hsKs
+ 1 · · · AsKs,sKs

 .

Corollary 4.1. It holds that

(	(Y ;h))T (Y ) = 1.

Proof. One can obtain immediately

det(A) =
N

s−1∏
j=1

Pmj

 s∏
i=1

(
Pmi

+ Kmi

)Kmi
−1

,

and
s∑

i=1

Ki∑
α=1

mi det
(
Bmiα

) = det(B̃)

s∏
i=1

(
Pmi

+ Kmi

)Kmi
−1 − det(A)

where

B̃ =


P1 + m1(H1 + 2) 2m1 + m2H1 2m1 + m3H1 · · · 2m1 + msH1

m1(H2 + 2) P2 + m2(H2 + 2) 2m2 + m3H2 · · · 2m2 + msH2

m1(H3 + 2) m2(H3 + 2) P3 + m3(H3 + 2) · · · 2m3 + msH3

m1(H4 + 2) m2(H4 + 2) m3(H4 + 2) · · · 2m4 + msH4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

m1(Hs + 2) m2(Hs + 2) m3(Hs + 2) · · · Ps + ms(Hs + 2)


and Hj = ∑Kj

α=1(N + Kj + 2hjα + 1). The determinant det(B̃) is calculated as

det(B̃) − N

s−1∏
j=1

Pmj
=
(

m1

s∏
�=2

P�

)
s∑

i=1

Hi +

(
N

s∏
�=1

P�

)
s∑

j=2

(mj − mj−1)
∑s

i=j Hi

Pj−1Pj

.

(4.5)

In the derivation of (4.5), we have used several identities such as

Pj − mj

mj+1
Pj+1 =

(
N − 2

j∑
i=1

miKi

)(
1 − mj

mj+1

)
(j = 1, 2, . . . , s − 1),

(
N − 2

k∑
i=1

miKi

)(
1 − mj

mj+1

)
+

mkmk+1(mj+1 − mj)

mk+1(mk+1 − mk)mj+1
Pk+1 = mk+1(mj+1 − mj)

(mk+1 − mk)mj+1
Pk

(k = 1, 2, . . . , s − 2; j = k + 1, k + 2, . . . , s − 1)
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which are obtained from the definition Pi = N − 2
∑s

j=1 Kj min(mi,mj ). Finally, we obtain
an expression

	(Y ;h) = exp[π
√−1(Y ;h)]

where

(Y ;h) = m1Ps

∑s
i=1 Hi

NP1
+

s∑
j=2

(mj − mj−1)Ps

∑s
i=j Hi

Pj−1Pj

+ M.

Now T (Y ), the LCM in proposition 2.1 for the Young diagram Y, can be expressed in
terms of mi and Pi :

T (Y ) = LCM

(
NP1

m1Ps

,
P1P2

(m2 − m1)Ps

, . . . ,
Ps−1Ps

(ms − ms−1)Ps

, 1

)
.

It is easily seen that (Y ;h) × T (Y ) is an integer. Let us show that (Y ;h) × T (Y ) is even.
If N is odd, then Pj s are odd and Hj ≡ Kj mod 2; hence, the numerator of

(Y ;h) = 1

N
∏s−1

j=1 Pj

{
m1P2P3 · · ·Ps−1Ps

s∑
i=1

Hi

+

(
N

s∏
�=1

P�

)
s∑

j=2

(mj − mj−1)
∑s

i=j Hi

Pj−1Pj

+ MN

s−1∏
j=1

Pj

}

is even and the denominator is odd; thus, (Y ;h) × T (Y ) is even. On the other hand, if N is
even, then Hj are even and(

m1Ps

NP1
+

(m2 − m1)Ps

P1P2
+ · · · +

(ms − ms−1)

Ps−1

)
× T (Y )

is an integer; this means that {(Y ;h) − M} × T (Y ) is even; thus, it follows that if M is even
or T (Y ) is even then (Y ;h) × T (Y ) is even. However, from the proof of the formula (2.1)
given in [10], we can easily see that T (Y ) is always even when N is even. �

Proposition 2.1 and corollary 4.1 suggest the following conjecture. Let M be an integer
and let Y be a Young diagram which gives a partition of M. Recall that V Y

[M] is a subspace
of V = C

2 ⊗ C
2 ⊗ · · · ⊗ C

2︸ ︷︷ ︸
N

spanned by the eigenvectors of t̂ corresponding to the Young

diagram Y. On the other hand, �Y
[M] is the set of states of the PBBS, whose member consists of

M balls and has the conserved quantity characterized by Y described in section 2. Also recall
that each element of �Y

[M] is regarded as a monomial in V .

Conjecture. If the string hypothesis is true, then

V Y
[M] ⊂ span �Y

[M].

Furthermore, if all the eigenvectors can be obtained by the string hypothesis, the stronger
condition

V Y
[M] = span �Y

[M]

holds.
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5. Concluding remarks

In this paper, we considered the fundamental cycle of the PBBS from the viewpoint of the
relation between the PBBS and solvable lattice models, namely the six-vertex model and its
generalizations to higher spin representations. Observing that in the zero temperature limit
the transfer matrix of the lattice model gives exactly the time evolution of the PBBS, we
showed that the fundamental cycles could be read from the spectrum of the transfer matrix.
Using the Bethe ansatz method, we obtained a determinant formula for the eigenvalue at
zero temperature, which should have information on the fundamental cycles. We conjectured
that the Young diagram appearing in the string hypothesis exactly corresponds to the Young
diagram characterizing the conserved quantities of the PBBS. We have a strong feeling on the
validity of the conjecture.

We have considered the simplest PBBS, having only one species of ball, and box capacities
being all equal to 1. Extension of our method to the PBBS with arbitrary box capacities (which
could differ site by site) is straightforward: it could be done by using R(�k,�) in (3.2), instead
of R(1,�). Extension to the PBBS with many species of ball is also possible: in this case we
have only to consider Uq(sln) symmetry, instead of Uq(sl2).
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